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TECHNICAL MEMORANDUM X-53997

SOME APPLICATIONS AND LIMITATIONS
OF THE FAST FOURIER TRANSFORM

INTRODUCTION

The analysis of a time series is very important in many experiments
(such as vibrational testing of structures). Seemingly, the two functions
desired most often are the power spectral density function and the correlation
function. Theoretically, if one is known exactly, so is the other. In
practice, small errors in one may cause large errors in the other. This
discussion includes power spectral density functions, autocorrelation
functions, cross-spectral density functions, cross-correlation functions,
and other related functions.

There are three separate aspects of the spectral analysis,
(1) definition of spectrum, (2) calculation of the defined spectrum, and
(3) interpretation of the calculated spectrum. All three problems are
considered here.

The most direct route from a time series (discrete or continuous)
to a spectral density function is the Fourier transform. In the past, the
computer time required to calculate a Fourier transform made this approach
impractical; as a result, most approaches were indirect. The correlation
function for a limited number of lags was calculated, then the Fourier
transform of the correlation function was calculated. Recent developments
in procedures for complex arithmetic have made the calculation of Fourier
transforms of discrete time series feasible. Because older methods have
been in use longer, change to the direct Fourier transform method is slow.

This discussion explains the uses and limitations of the new approach
using the Fast Fourier Transform. '



FOURIER TRANSFORM

A detailed discussion of the Fourier transform, with the necessary
and sufficient conditions for the existence of the transforms, is found in
many textbooks. Here, the existence of the integrals or sums will be
assumed to exist. In the Appendix, the procedure known as the Fast
Fourier Transform is explained more fully.

If x(t) is a time series and if the two integrals

x(1) = [ x(me ¥ P a (1) .

-0

jom ft

x(t) = [ X(f)e af (2)

exist, X(f) is called the Fourier transform of x(t) , and x(t) is called
the inverse Fourier transform of X(f) . They, X(f) and x(t) , are
frequently called transform pairs.

In general, the time series that are recorded for analysis are finite
and the existence of the preceding integrals are guaranteed by the assump-
tion that the series is zero outside some time interval (usually 0=<t< T).
Under these assumptions these integrals become

T
x(f) = [ x(t)

e—j27r ft gt (3)
0
iy .
x(t) = [ xe®™ g , (4)
oF

where F is an upper bound of the frequencies found in x(t) . Also, in
practice, the time series is a discrete time series (or must be made into
one) of N values usually equally spaced. Therefore, the above integrals
become



N-1 -j2m ft,

X(f) = (A1) ), x(t)e ! (5)
i=0
with
T = N-* At
and
N-1 +ji2m f.t
x(t) = (A ), X(t) e ik =i (6)
i=0

where the last expression is summed on frequency. These sums are
probably more familiar as

X(f) = (At) ), x(t,) [eos 2r ft, - j sin 27 fti] (7)
and
x(t) = (Af) Z/ X(fi) [cos 2m fit +j sin 27 fit] (8)

In the first formula, one may calculate X(f) for any f by simply inserting
that value of f in the sum and summing the values. In the second equation,
the same is true of any t value if X(f) is known for all f. These
transforms are usually referred to. as Discrete Fourier Transforms, or
(DFT). If the sampling rate is sufficient, the value of the Discrete Fourier
Transform should agree very closely with the Fourier transform evaluated
at the same f value.

The Fast Fourier Transform (FFT) is just the DFT with some added
restrictions and some innovations in the method of calculation. These
restrictions are (1) N (the number of points) must be a composite number;
1 2 N-1

——; and (3) the

(2) the calculated values of f are 0, T T 0 T



points must be equally spaced. For the limited values where X(f) is
calculated, the FFT and the DFT should agree to the accuracy of the program

used. A great many of the programs available insist that N = Za for some
integer a . It seems to be desirable in all cases that N have no prime
factor greater than 5.

Since the transform is the integral part of this study, it must be
calculated with a reasonable degree of aceuracy. However, the function of
concern is the power spectrum and the discussion of accuracy will be
included in that section.

POWER SPECTRUM

There are several definitions of power spectrum in the literature [1].
In theory, the direct definition of the power spectral density function of x(t)
is

_ 1 B -
5,0 = tm g [me XT(f):I , (9)
where
T .
X0 = [ x() o2t 4 (10)
T g

and §§-T(f) is the complex conjugate of XT(f) . Since x(t) is a finite

series in the cases considered here, the definitions will be

1 —
5.0 = 2 [X®x0] (11a)
and
F jor £t
X(f) = [ x(t) e Vat (11b)

0



This definition is for a time series where t runs from 0 to T and f runs
N
from - -Né' Af to > Af in the usual Discrete Fourier Transform approach,

but f runs from 0 to N(Af) in the Fast Fourier Transform approach.
Both of these are effectively two-sided spectral functions. It can be shown

that if X(f) is calculated from - N Af to S Af, X(KAf) =X (- kAf)

2 2
and if f is calculatedat 0, Af, ..., NAf, then X(kAf) =X[(N-k)Af].
Therefore in the first case, SX(f) is symmetric about £ =0, and in the

N
second case it is symmetric about > (Af) .

Some writers call the function of equations (11a) and (11b) the
periodogram of x(t) [2] and take m time records of length T and average
these to get the spectral density function. Their definition would be

1 m
s () = — _Z s, () (12)
i=1 i

where SX (f) is the spectral density function of the ith time series by the
i

previous definition or the periodogram by their definition. In actual

problems, it is common practice to have a one-sided spectral function,

defined as

N
Gx(f) = st(f) , 0=f < -E(Af) (13)

In this report, the spectral density function will be as defined by
equations (11a) and (11b). If some modification is desired, it will be
called the modified spectral function.

There are many ways to modify the spectral density function. One is
given above where m series of length T are used and their spectral
density functions are averaged. The more common modifications are to
weight the time series before finding the Fourier transform, or by weighting
the calculated Fourier transform before calculating the spectral density
function. Usually, these procedures are referred to as weighting,
smoothing or filtering. Some of the common weighting functions or filters
are given later in this report [1, 2, 3]. However, for deterministic



functions, the results are more accurate without the filtering when the time
T and the sampling rate are correctly chosen.

Some other useful functions, easily calculated from the FFT and
power spectral density functions, are discussed here. If x(t) and y(t)
are two time series of the same length and sample rate, the cross power
spectral density function is

S R
sXy(f) = Tlinoo T{X(f)Y(f)} , (14)

or for our approximation
S LX) v (1
xy ) = iX() ) 5)

Also, the autocorrelation function and cross-correlation function are
Fourier transforms of the power spectral density function and cross spectral
density function, respectively, i.e.,

_ P jem fr
R (1) = _foo s, (1) e df (16)
and
ny(T) =/ SXy(f) RECEUIPY, (17)

Under the restrictions of the Appendix, if SX(f ) is entered instead of
the time series in the FFT routine, the autocorrelation function is the output;
if SXy(f) is used for input, the cross-correlation function is the output.

Another function frequently desired is the phase angle between two

time series. If the cross power spectral density function SXy(f) is written

as a complex function

Sxy(f) = cxy(f) - jQXy(f) , (18)



then the phase angle ¢ is

Q__(f)

§ = tan C—XL(f-)— (19)
Xy

If the correlation functions are desired, it is recommended by some [1, 2]
that the time series x(t) or y(t) be altered by addition of the same
number of zeros as the number of values of the correlation function desired.
For example, if the time series consists of 1024 points and 100 values of
the correlation function are desired, the last 100 values would be replaced
by zeros. With the altered time series, the correlation functions computed
via the FFT yields better agreement to the direct correlation method.

FILTERS OR WEIGHTS

Two commonly used programs for vibration analysis are RAVAN [4]
and STAN!, These use the Blackman-Tuckey method.

In the Blackman-Tuckey method of calculating the power spectra,
filtering is necessary even for periodic deterministic data. With the FFT
approach, filters are not required for periodic data when the length of the
record is chosen correctly.

The filter or weight should be designed for the particular problem.
However, some of the common filters are discussed here.

Defining the time series x(t) to be zero outside a finite interval
-T=t< T is equivalent to using a weight function w(t) =1 on this interval
and zero elsewhere. Now, according to Fourier transform theory, the
Fourier transform of a product w(t) x(t) is the convolution of W(f) with
X(f). Mathematically, this can be expressed as the transform of w(f) x(t):

<o

[ X(f) W - £y) df (20)

- 00

The effect of using a short sample of the record is shown in Figure 1 [5].

i. Newberry, M. H.: The Statistical Analyzer Program (STAN). Internal
Note IN-COMP-67-1, George C. Marshall Space Flight Center, September
1967,



FUNCTIONS TRANSFORMS

X X

(a)

(b)

(e)

| = < L g o

0 —»t 0 —§

NOTE: Ignoring the early and late parts of the function has
the effect of "blurring" its spectrum. As shown
here, the broad peaks AA of the transform are little
affected; the rapid oscillations BB almost disappear;
and the narrow peak at zero frequency is reduced.
This conclusion is physically reasonable since cutting
off the ends of the function {a) leaves most of the high
frequency oscillations and simultaneously deletes the
slow ones and halves the area under the curve. The
function has been chosen symmetrically to avoid the
need to represent complex values in the transform.

Figure 1. Example of the convolution theorem.

If the first line (a) is x(t) and its transform X(f) , and the second
line (b) is the weight function w(t) and its transform W (f) , then the last
line (c¢) is w(t) x(t) and its transform. Notice that the higher frequency
components of the transforms of x(t) and w(t) x(t) are very similar.
However, in this case, the lower frequency components are greatly altered.
Also, the value at f =0 is much lower in the weighted case. The process of
convolution causes a cancellation when there is a rapid oscillation, as in
this case.



For the Discrete Fourier Transform or Fast Fourier Transform,
this same situation applies unless the frequencies are discrete and the time
interval is chosen so that the calculated values are the actual frequencies
present. In this case with deterministic functions, the results are very
accurate.

This problem of using a finite record cannot be avoided. Comparison
of this analysis with that of a longer segment of the time series will often
help one to see the actual situation since the narrower bandwidth tends to
separate the peaks.

One of the weights recommended is [2]

1 7t
w(t) = 2 (1—cos 0.1T>for 0=t<0.1T ,
w(t) =1 for 0.1T=t=0,9T , (21)
w(t) =—I:1+cos7rﬁ-:6g'1-:-9rl)-:| for 0.9T<t=T

If one considers the above weight function and compares its spectra or
transform with the square weighting function above, one sees that the side
lobes are much smaller. This means that the frequencies in these side
bands contribute less to the value calculated for a given frequency [1].

Another weight function used [6] is
w(t) = sin? T (22)
j N

or Xj is weighted by W(tj) . One of the advantages of this filter is that the
Fourier coefficients ak's and bk's can be calculated without the weight
function, and then the coefficients can be weighted so that

a, =3 (—ak_1+2ak—ak+1> (23)



and

. _
bl =3 ( by *2b bk+1> (24)

The document cited in Reference 6 recommends further smoothing by
calculating

( '2+b'2)- , (25)

-
B =

where Pk is the average power due to the kth frequency component, and

then calculating

y _ 1
P =1 <Pk—1 2P P > (26)

when noise is present. This last step is equivalent to weighting the auto-
covariance function with cos? % in the STAN program.
There are many other documented weighting or filtering approaches

12, 5, 6].

It should be realized that smoothing, filtering or weighting basically
degrades the resolution. Sharp peaks that might occur in a particular record
are smoothed out so that the analysis of different records of the same
general happening are more nearly the same. The improvement is in
stability or reproduciblity. The user should decide first whether he wants
resolution or stability. Then, if he desires stability, the proper filter
should be chosen for his problem.

One of the most commonly used class of weights is a generalized
class of cosine tapers. The transform of the generalized form is

10



o

sm<
W(2rf, m) =

(5

R
(52)

. cos , (27)
( m) - 4n?ft 2m
T

where m =fT . This weight is capable [3] of reducing the contribution

from adjacent frequencies separated by more than f =% . However,
optimum choice of m requires the advance knowledge of the minimum
separation of any two frequencies of inferest.

ACCURACY OF FFT

For the FFT problem, the main sources of error are sampling rate,
numerical integration, quantization and the number of calculations required.

The numerical integration scheme approximates the Fourier integral
by a series

T
f x(t) (cos 2n ft - jsin 2w ft) dt = (At) | y. +y, ... +¥
0 0 1 N-
(28)
where N : At =T and
y, = x(t,) [cos 2w ft, - j sin 2w ft.] (29)
i i i i

This particular form does not lend itself to easy theoretical analysis. How-
ever, it is very similar to the trapezoidal integration formula

Yo IN
At | = + ¥, +F Yy F Y F : (30)

11



for which the error estimates are known. The upper bound to the error in
this formula is [7]

1" 3
E = max ELI%-A—”— (31)

where y" is the second derivative of x(t) [cos 2 ft - j sin 27 ft]. If it is
assumed that x(t) can be expanded into a trigonometric series, the four
terms involved for each fi are (cos 27 fit) (cos 27 ft),

-j(sin 27 fit) (sin 27 ft), -j(cos 27 fit) sin 27 ft, sin 27 f.t cos 27 ft .
These terms are very similar and only one is treated here. Since the
integrals of these terms vanish unless f = fi , consider y(t) =cos? 2 ft.

Then, y'(t) is -4m f cos 2r ft(sin 27 £t) , y''(t) = 8n® £ (sin® 2r ft -
cos® 2r ft), and |y"(t)| = 87%2 . Now, let T =1 unit of time. Then,

if k samples are taken on each cycle of y(t), N =kf and At = é .
Hence,
2¢2 ( 1 >3
- 0.12 12K

1
The integral of cos? 27 ft between 0 and.1 is P Hence, the maximum

2 .
percentage error is —}g—g—z or roughly % . This indicates the maximum
error for 10 samples per cycle of the given frequency is 14 percent. In
deterministic cases, the error is much smaller than the theoretical limit
when the sample rate exceeds 5 samples per cycle. For lower rates, it is
very close. In one problem with 3 samples per cycle, the error was 100
percent. Thus, errors resulting from sample rate and errors resulting
from numerical integration procedure are closely associated.

The quantization errors must be treated statistically. If it is
assumed that the quantization errors satisfy certain common statistical
models, the errors in the final answers are very small, Two examples
that will be discussed later indicate that this conclusion is valid in these
cases.

12



The propagation and round-off errors have been treated by Welch [8]
and have not been treated here. Using his assumptions, the percentage
error was very low, usually less than 0. 1 percent.

While error estimates are very worthwhile, experiments with
functions where the answers are known or can be compared with some
accepted standard are very desirable.

The first case chosen was the deterministic function
X(f) =10 cos 20.5 7t , (f=10.25) . The objective in this experiment was
two-fold: (1) to show the effect of the record length T on resolution,

(2) to show the accuracy of the method.

The results when the time T was % s % s -% , 1, 2, and 4 seconds are
shown in Table 1. It is obvious if one graphs the results that as T increasés
the spectral density function tends toward a peak at 10 1/4 cycles per unit
of time. At T =4, the function is zero everywhere except at 10 1/4 cycles
as it should be. Moreover, the peak value is 50 and this is the theoretical
value. For T, any integral multiple of 4, the results will repeat.

The values for the power spectral density at other frequencies when
T < 4 are due to the model. Effectively the FFT calculates the Fourier
series coefficients for a function which agrees with the given function from
0 to T, and then repeats itself with period T . Clearly, in the given
case, the two functions were not the same until T = 4. These values are
usually referred to as the results of leakage.

Since nothing is known about the values of the spectral density
function between calculated values, discretion must be used in interpreting
a single analyzed record. If a frequency component falls between calculated
values of the spectral density function, the calculated values on each side
will compensate for the missed frequency. The Fourier coefficients decay
as f—_i_f— , Where fa is the actual frequency and fC is the calculated

a ¢
frequency.

Studying two or more of these cases with T <4  should give a
- better understanding than one case with a fixed T .

The second example chosen was a square wave with amplitude 64
and at 32 cycles per second. The sample rate was chosen to be 2048 samples

13



TABLE 1. SPECTRAL ANALYSIS OF x(t) =10 cos 20.57 t

N=8T=1/8 N=16;T =1/4 N=32,T=1/2 N=64t=1 N=128;t=2 N=256;t=4
() PSD G(f) PSD G(f) PSD a(f) PSD G(fy PSD
Frequency | (Unit)? | Unit?/Hz | (Unit)? |Unit’/Hz | (Unit)? | Unit?/Hz | (Unit)? | Unit’/Hz G(f) PSD | (Unit)? | Unit?/Hz
0.000 0.865 6.924 0.0737 | 0.2948 | 0.0607 | 0.1215 | 0.0968 | 0.0968 0.0244 | 0.,0122 0.0000
0.250
0.500 0.0246 | 0,0123
0.750
1.000 0.0987 | 0.0987 0.0255 | 0.0127
1.250
1,500 0.0269 | 0.0134
1.750
2.000 0.0655 | 0.1310 | 0.1046 | 0.1046 0.0290 | 0.0145
2.250
2.500 0.0320 | 0.0160
2,750
3.000 0.1158 | 0.1158 0.0359 | 0.0480
3.250
3.500 0.0411 | 0.0206
3.750
4,000 0.2333 .| 0.9332 | 0.0837 | 0.1674 | 0.1346 | 0.1346 0.0480 | 0.0240
4,250
4.500 0.0571 | 0.0286
4.750 :
5,000 0.1665 | 0.1665 0.0694 | 0.0347
5.250
5.500 0.0863 | 0.0431
5.750
6,000 0.1373 | 0.2748 | 0.2237 | 0.2237 0.1101 | 0.0551
6.250
6.500 0.1448 | 0.0724
6. 750
7.000 0.3393 | 0.3393 0.1978 0.0989
7.250
7.500 0.2839 | 0.1420
7.750
8.000 5.881 47,049 3.0507 | 12.203 0.3812 | 0.7625 | 0.6322 | 0.6322 0.4365 | 0.2183
8. 250
8.500 0.7431 | 0.3715
8,750
9.000 1.839 | 1.839 1.5010 | 0.7505
9.250
9,500 4.2989 | 2.149
9. 750
10.000 24,4255 | 48.8511 | 44,541 |41.541 39.9042 |19.952
10.250 200.0 | 50.0000
10,500 41.1640 |20.582 0. 0000
10,750
11,000 4.1890 | 4.1890 4.7487 | 2.359
11,250
11,500 1.7526 | 0.8763
11.750
12.006 7.4488 | 29.7 0.3986 | 0.7972 0.7014 | 0.7044 0.9226 | 0.4613
12,250 "
12,500 0.5758 | 0.2879
12. 750 0.0000

14




TABLE 1. (Concluded)
N=8 T=1/8 N=16; T = 1/4 N=32;T=1/2 N=64;t=1 N=128;t=2 N =256;t=4
G(f) PSD G(f) PSD G(f) PSD G(f) PSD G(f) PSD
Frequency | (Unit)? |Unit?/Hz | (Unit)? | Unit®/Hz | (Unit)? | Unit’/Hz | (Unit)? |Unit?/Hz G(f) PSD  [(Unit)? | Unit®/Hz
13.000 0.2600 | 0.2600 0.3977 | 0.1988 0.0000
13,250
13.500 0.2938 | 0.1469
13,750
14.000 0.0698 | 0.1396 | 0.1285 | 0.1285 0.2276 | 0.1138
14,250
14,500 0.1828 | 0.0914
14.750 -
15.000 0.0739 0.0739 0.1510 | 0.0755
15.250
15. 500 0.1275 | 0.0638
15.750
16. 000 0.4995 | 3.996 0.9435 | 3.774 0.0238 | 0.0477 | 0.0467 0.0467 0.1097 | 0.0548
16.250
16,500 0.0958 | 0.0479
16.750
17. 000 - 0.0315 0.0315 0.0847 | 0.0424
17.250
17.500 0.0758 | 0.0379
17.750
18.000 0.0105 | 0.0210 | 0.0223 0.0223 0.0684 | 0.0342
18.250
18.500 0.0623 | 0.0312
18,750
19. 000 0.0164 0.0164 0.0572 | 0.0286
19.250
19,500 0.0528 | 0.0264
19.750
20. 000 0.4362 | 1.7446 | 0.0052 | 0.0105 | 0.0124 0.0124 0.0491 | 0.0245
20. 250
20. 500 0.0459 | 0.0229
20, 750
21, 000 - 0.0096 0.0096 |[-0.0431 | 0.0216
21, 250
21.500 0.0407 | 0,0204
21. 750
22, 000 0.0028 | 0.0056 | 0.0077 0. 0077 0.0386 | 0.0193
22,250
22. 500 0.0367 | 0.0184
22, 750
23. 000 0. 0063 0.0063 0.0350 | 0.0175
23,250
23. 500 0.0336 | 0.0168
23.750
24. 000 0.0724 | 0.5794| 0.2915 | 1.6604 | 0.00i5| 0.0030| 0.0052 0.0052 0.0162
25. 000 0.0044 0.0044 0.0151
26. 000 0.0038 0.0038 0.0142
27. 000 0.0033 0.0033 0.0135 ¥
28. 000 0.237 0.9487 | 0.0005 | 0.0009| 0.0030 0.0030 0.0130 0.0000
TOTALS 50. 85 51.33
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per second with T =1 second. The objective was to compare the accuracy
of the FFT with the theoretical answers and also to compare it with the
results from RAVAN and STAN for a similar time series.

The calculated values of the PSD and the theoretical values for the
first 10 components are tabulated in Table 2. The percentage error based
on the maximum theoretical value is roughly 0. 04 percent. The actual
value of the error decreases with higher frequency.

A direct comparison with RAVAN and STAN values was not made
since the example recorded in STAN? used a square wave of 100 cycles per
second and 8000 samples per second. However, the actual errors in these
cases increased with increasing frequency. With the FFT, the percentage
error fell between the values of RAVAN and STAN for the lower frequencies.
For higher frequencies, the FFT answers had smaller percentage errors
than either RAVAN or STAN, even though their sample rate was higher per
cycle.

TABLE 2. SQUARE WAVE (Amplitude 64)

Freq. FFT (PSD) Freq. Theory (PSD)
32 3318.76 32 3320, 0925
96 367.577 96 368. 899

160 131.577 160 132. 8037
224 66. 487 224 67.757
288 39.763 288 40, 989
352 26.268 352 27.439
416 18. 544 416 19.646
480 13.739 480 14,756
544 10.572 544 11.488
608 8. 400 608 9.197
2. ibid.
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EXPERIMENTAL RESULTS

Two channels of data from test AS-506 were used for several
different studies. The first four of these studies were to show the effect
of the sampling rate and the part of the records used. All four were taken
from the two channels of data with a time slice from 60 seconds to 62. 048
seconds.

The first analysis used the first 1. 024 seconds of data from each
channel with a sampling rate of 1000 samples per second. The predominant
(largest PSD) frequencies and their magnitudes are shown in Table 3 for
both channels.

The second analysis used a time slice of 1 second from 60,0 to 61.0
seconds of each channel. The sample rate was 1024 samples per second.
The results of this analysis are shown in Table 4.

Even though the sample rate and time interval were very nearly the
same, some changes in the predominant frequencies did occur. No rigorous
explanation of these differences is offered. Since the different lengths of
record forced the calculation of the FFT at different discrete values of
frequency, these variations may result from the sharpness of the peaks on
the curves.

The third and fourth analyses were made to further check the effect
of sampling rate and length of record and also to check whether these
particular time series were self-stationary with the given lengths of record.

If the time series were self-stationary with time T , the results
from any two segments of the record with length T would be the same.

Table 5 shows the results for a time slice from 61. 024 to 62, 048
seconds with a sample rate of 1000 per second. Table 6 shows the results
of a time slice from 61. 0 to 62. 0 seconds with a sample rate of 1024 per
second.

Again, there is considerable variation between Tables 5 and 6
because of the sample rates and lengths of record. Also, Tables 3 and 5
differ as do Tables 4 and 6. This indicates that the time series are not
self-stationary with records of length 1 second or 1. 024 seconds. It should
be noted that the predominant frequency is basically the same for the given
channel in all four cases. Many of the others occur in each case but their
rankings are different.
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‘TABLE 3. FFT — TIME FROM 60.0 TO 61.024

Channel 1 Channel 2
Freq. Amp. (PSD) Freq. Amp. (PSD)
186.523 5,513 187.500 26.783
156. 250 2.690 281.250 4,537
177. 734 2.172 186.523 4,263
150,391 2.094 337.891 3.973
145,508 2,042 0,977 3.915
151.367 1. 806 213, 867 3.834
168. 945 1.666 235. 352 3.065
187. 500 1.513 182,617 2.979
162.109 1.474 228.516 2.6'75
159,180 1.419 207.031 2.662
TABLE 4. FFT — TIME FROM 60.0 TO 61.0
Channel 1 Channel 2
Freq. Amp. (PSD) "Freq. Amp. (PSD)
187.00 8,015 188.00 28.641
153.00 2,729 282,00 5.52
156.00 2,262 1.00 5,157
202,00 1.831 2.00 4,924
152.00 1.726 344, 00 4,173
178.00 1.672 226,00 3.643
163. 00 1.662 215,00 3.622
6.00 1.4914 219. 00 3.315
1.00 1,424 183. 00 2,939
169, 00 - 1.135 365.00 2,632
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TABLE 5. FFT — TIME FROM 61. 024 TO 62. 048

Channel 1 Channel 2
Freq. Amp. (PSD) Freq. Amp. (PSD)

186.523 10,208 187.50 21.869
0.977 6.998 188.477 8.372
158.203 3.483 2,930 6.717
170.898 2.668 215. 820 4.602
163. 086 1.768 226,562 3.817
10. 953 1.734 204,102 3.774
147. 461 1.367 220,703 3.541
180.664 1.312 239.258 3.428
195.312 1.258 214,844 3.378
152.344 1.150 347,656 3.269

TABLE 6. FFT — TIME FROM 61.0 TO 62.0

Channel 1 Channel 2

Freq. Amp. (PSD) Freq. Amp. (PSD)

187.00 5,838 188.00 23.727
186.00 4,601 189,00 15.633
160. 00 1.965 215,00 8.054
194, 00 1.443 282.00 5.739
7.00 1.339 281.00 4,687
159.00 1.286 233. 00 4.063
154, 00 1.285 249,00 3.714
60,00 1,278 205.00 3.655
180,00 1.263 172,00 3.579
140. 00 1.235 376. 00 3.450
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The next two analyses were made to compare the results of runs of
length 2T with those of length T and also to compare the results of the
same analyses performed by STAN.

Table 7 shows the results of the analysis of 2. 048 seconds of data
with a sampling rate of 1000 per second and Table 8 shows the results of
analysing a 2 second record with sampling rate of 1024 samples per second.
The agreement between these two cases seems to be better than for the
shorter records.

Tables 9 and 10 show the results of analysing the same data as
Tables 7 and 8 but using STAN. The STAN program was set up to find the
predominant frequencies up to 200 cycles per second. There is very good
agreement between these methods as to the predominant frequency in each
case. It should be noted that the slightly different sampling rate and length
of records affected the results of the STAN program fully as much as it did
the FFT.

These results are also shown in Figures 2 through 9. Figure 2
should be compared with Table 7, channel 1, and Figure 3 to Table 7,
channel 2. Figure 4 corresponds to Table 8, channel 2. Figure 6
corresponds to Table 9, channel 1, and Figure 7 to Table 9, channel 2.
Figures 8 and 9 correspond to Table 10, channels 1 and 2, respectively.

Two other experiments were performed to study the effect of the
number of bits. When the data was changed from 10 bits to 6 bits, the
change in the larger peaks was only about 10 percent. Changing from 10
bits to 2 bits gave about the same results for the major peak. These results
are shown in Figures 10 through 13, From this, it appears that the number
of bits used is not too significant.

Two further analyses were performed, The purpose of these two

was to check the results of the FFT when used to calculate the frequency
-1 )
response function of a system. Two time series, 100 e 0t and
100 e_Zt sin 12 7t , were chosen. Since these functions are obviously not
stationary, the spectral density function was modified. In this study, the
quantity 2 X (f) X(f) was used and compared with the theoretical value of
2|H(f)|? where H(f) is the frequency response corresponding to the given
time response. The factor of 2 was included in order to use only positive
-10t

frequencies. These results are given in Table 11 for 100 e and Table

12 for 100 e_zt sin 127t, The totals shown in the tables are for the integrals
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TABLE 7. FFT — TIME FROM 60. 0 TO 62. 048
Channel 1 Channel 2
Freq. Amp. (PSD) Freq. Amp.. (PSD)
186.523 6.961 187,500 13.431
0.488 4.135 187. 958 7.586
169. 434 1.474 188.477 4.009
1.465 1.406 188.956 3.576
0.977 1.402 215.332 2.904
155,762 1.294 0.488 2.820
152,832 1.181 281,250 2.675
187.012 1.1001 223.145 2.549
4.395 1.063 216. 306 2,064
60. 059 0.967 209. 961 1.997
TABLE 8, FFT — TIME FROM 60.0 TO 62.0
Channel 1 Channel 2
Freq. Amp. (PSD) Freq. Amp. (PSD)
187.00 3.764 188.0 13.898
186.5 3.457 187.5 7.615
0.500 2.023 189.0 6.251
187.5 1.635 0.50 5.301
60.0 1.568 281.5 4, 505
156.0 1.351 188.5 3.162
169.5 1.140 189.5 2. 352
177.5 1.049 212.5 2.236
152.0 1.034 216.5 2.230
194.0 0.944 206.0 2.156
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TABLE 9. STAN — TIME FROM 60.0 TO 62.0

Channel 1 Channel 2
Freq. Amp. (PSD) Freq. Amp. (PSD)
187.0 10.005 188.0 30. 393
156.0 2,434 182.0 3.122
170.0 2.105 196.0 2.621
6.0 2.000 193.0 2.313
153.0 1.978 165.0 2.042
163.0 1.841 8.0 1.825
159.0 1,772 172.0 1.628
178.0 1.595 176.0 1.595
60.0 1.533 60.0 1.357
195.0 1.343 155.0 1.350
TABLE 10, STAN — TIME FROM 60.0 TO 62. 048
Channel 1 Channel 2
Freq. Amp. (PSD) Freq. Amp. (PSD)
186.8 8.898 187.8 26.646
155.8 1.753 3.0 3.240
152.3 1.555 1.0 2.615
169.3 1.407 182.3 2,235
177.3 1.399 180.8 1.820
170.8 1.369 192.3 1.713
4.5 1.313 195.3 1,711
163.3 1.151 193.8 1.402
158.3 1.036 184.8 1.266
60.1 1,022 171.8 1.203
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TABLE 11. TOTAL POWER FOR 100 e -

ot

1000 Samples/Sec

Freq. 1. 024 sec Theory

0 104,17 100. 00
0,977 146. 68 145,30
1.953 80. 57 79. 81
2,930 46. 01 45.58
3. 906 28.75 28.47
4,883 19. 39 19.21
5. 859 13.87 13.74
6. 836 10, 38 10. 28
7.813 8.05 7.97
8.789 6.41 6.35
9.766 5.23 5.17
Total 497. 86 500. 00

of the area under the curves 2 X(f) X(f) and 2| H(f)|?, respectively.

It should be noted that the error in 2 |H(f)|? is 4 |H f | times as large
as the error in [H(f)|.

Hence, for the value of |H(f)|
the error should be approximately 1 part in 50 for 2 seconds of data and
about 1 part in 500 000 when 16 seconds of data were used.

at 6 cycles per second in Table 12,
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TOTAL POWER FOR 100 o2t

TABLE 12, sin 12wt
512 512 256 512
Samples/ Samples/ Samples/ Samples/
Sec Sec Sec Sec
Freq. 2 sec 4 sec 4 sec 16 sec Theory
0 6.7392 6. 9865 6. 9675 6. 9865 6.9968
1 14, 2477 14,7744 14,7353 14,7843 14,7972
2 17. 0152 17,6442 17.6016 17.6561 17.6701
3 23.7952 24,6747 24, 6245 24,6914 24,7082
4 42,7892 44.3709 44, 3037 44,4006 44,4642
5 131.7444 136. 6147 136.5003 136.7063 136.7443
6 1203,7800 |1248.2800 | 1248,2704 [1249.1187 [1249,1188
7 94,4052 97.8950 97. 9904 97. 9607 97.9291
8 21,8684 22,6768 22,7245 22.6920 22,6760
9 8.5886 8.9061 8.9363 8.9121 8.9020
10 4,.2691 4,4269 4,4484 4.4299 4.4228
11 2,4271 2.5169 2.5330 2.5186 2.5132
12 1.5062 1.5619 1.5747 1.5630 1.5587
Total
Power | 1242,70 1244.74 1244.74 1246.03 1246.49
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The results for these two cases are very accurate. The maximum
percentage error for |H(f)| is for the 0 frequency value of H(f) in
Table 11 and this is less than 2 percent. The maximum percentage error
relative to the maximum value of |H(f)] for the other terms in Table 11
is less than 0.5 percent. In Table 12, the maximum percentage error in
|H(f)| relative to the maximum value of |H(f)| is less than 0.2 percent.

INTERPRETATION

The spectral density function is calculated at discrete points. In
general, nothing is known about its value between these points. The graphs
in Figures 2 through 9 are the products of spectral density function and
bandwidth,

Without prior knowledge of the spectral density function, one cannot
tell whether indicated energies at adjacent points result from one or more
frequency components. In this case, a more detailed analysis is required.
Frequently, the analysis of a longer segment of the time series will suffice.
This is verified by Table 1.

In the cases studied here, it appears that most of the smooth peaks
resulted from one frequency falling between the calculated values. In the
two cages of actual observed data, it was obvious that small changes in the
points where the FFT was calculated made large changes in the maximum
values calculated. In other words, the maximum calculated value may not
be a very good approximation of the true maximum value in the neighborhood
of that point. However, with the recommended sampling rates and length
of series analyzed, the values of the spectral density function are as good
approximations of the true values as any other discrete method.

TYPICAL HARDWARE AND SOFTWARE CHARACTERISTICS

The time required to calculate the FFT and the power spectral
density depends on the number of values of the time series, the number of
bits used to express the value of the function, and the computer and display
used.
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The number of computation operations required to perform the FFT
and N data points is proportional to N log; N versus N2 for the
classical Blackman-Tuckey approach. When N is greater than 1023, the
time can be about 100 times faster for the FFT approach then for the
classical approach. An even greater time savings can be achieved utilizing
hardware to calculate the FFT, which is called the Fast Fourier Analyzer
(FFA).

Special purpose hardware, such as the FFA hardware, can be
attached to the mainframe computer as a peripheral to one of the mainframe
input/output (I/0) channels. The mainframe computer controls the FFA
hardware via priority interrupts or other program logic. The FFA hard-
ware has a separate core memory to allow simultaneous operations to be
performed by the mainframe computer and FFA hardware. This is a very
important advantage for many real-time data processing applications such
as image enchancement, spectral analysis, radar, sonar, and vibration
analysis. See summary Table 15 for some typical FFA's.

Since the FFA typically produces a squared quantity summed over
a large data population N , the number of bits to resolve the correct
answer is defined by the following equation:

R =J+2(K) +1

where J is the number of bits that will define the maximum population N
to be considered by the FFA. K is the A/D bit word size not including the
sign. Therefore, the FFA hardware specifications that define the complex
arithmetic bit register resolution to maintain accuracy without data
compression is R bits.

Often, the test engineer wants to know how many data channels may
be analyzed by the FFA in real time. Since this will depend on the specific
FFA and computer used, these timing equations are given as a guide to aid
the engineer in this evaluation.

INPUT Ti = HBN + Pi K sec
OUTPUT TO = HBN + Ps U sec
FFT Tf = 4N log N + 2N + PS i sec
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MULT T = 6N +P M sec
m r
Spectral T =T, +T
Density SD t m
N is the number of data points (must be a power of two) of the

real or imaginary data array;
B is the number of bytes in each element of the data array;

P is the program CPU overhead to acquire input data, convert
to engineering unit, and load FFA data memory;

b is the CPU program overhead to service the priority interrupt
service subroutine, store complex results, and decrement
counters and other program logic to orderly proceed through

the FFT;
H is the channel transfer time per byte;
P is the CPU program overhead to convert the FFT real and

imaginary array to power spectral densities, and conversion
for output display.

Tables 13 and 14 show a typical test case using two different
computers to perform the FFT with and without FFA., To perform on-line
quick-look analysis, the most time consuming part is the integration time
of the FFA (Table 14). In our investigation, the next time consuming item
was the display time of the CRT, This limits the number of the data
channels that may be analyzed during real time to one data channel every
13 seconds for the SDS-930 computer system and one channel for every
five seconds for the SIGMA-5 computer; real time could not be considered
for most vibration applications because the software speed of the FFT would
be too slow. Without the FFA, the time required for analysis and display
for one channel is 98 seconds with the SDS-930 computer and 12. 2 seconds
for the SIGMA-5 computer. The type of mainframe computer used will
influence the choice of the FFA hardware., Also, a fast and more advanced
computer may not require FFA hardware for some applications.
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TABLE 13.

TYPICAL CHARACTERISTICS OF ENVIRONMENTAL TESTS

Highest

Type Typical Time Frequency No Channels System Recording/
of Duration/Test Content/Ch. Typical Sampliarlxg Required Thoroughput Rate
Test (sec) (Hz) Rate Channel Total/On=-Line (On-Line)
Sine 0 - 540 2000 8 000 - 10 000 14/2 115 200
Sweep 540 1000 4000 - 5000 28/12 115 200

540 500 1500 - 2500 32/12 80 000

540 30 100 - 150 32/12 4 800
Sine 0-10 3000 8 000 10 000 14/2 115 200
Dwell 10 1000 4 000 5 000 28/12 115 200

10 500 1 500 2 500 32/12 80 000

10 30 100 150 32/12 4 800
Random 0-10 5000 10 000 12 000 i1/2 115 200

10 2000 4 000 6 000 28/2 115 200

a. Data samples/second




TABLE 14. FFT TIMING ESTIMATES

SDS-930 XDS-SIGMA 5
N =2048 | N =4096 | N =2048 | N =4096

Operation (sec) (sec) (sec) (sec)
Acquire x(t) in CPU
mainframe memory 0.5 1.0 0.1 0.2
Transform to
engineering units 0.25 0.5 0.1 0.2
Transform to
Zero mean 0.1 0.2 0.05 0.1
Spectra Computation
by software without 90 270 10 31
FFA®
Load FFAb memory 0.006 0.012 0. 003 0, 006
FFA solution time (FFT
service subroutine plus
overhead and spectra
conversion) 5 15 2.5 6.5
CRT display overhead 7 14 2 4
Total time with FFA
simultaneous input/
output throughput 12 27. 77 4,753 11,0006
Total time
simultaneous input/
output with software 97. 856 285.712 12, 253 35.506
FFT®

a. Software option
b. Hardware option
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TABLE 15. TYPICAL FFA'S AND THEIR BASIC CHARAC TERISTICS
TEXAS | TEXAS | TIME | TIME
cuamacremstics | LaBs | (VTG NSTRIN  BATAN B House
I I 1
e RaaE D 8192 | 32768 | 4096 | 4006 | 1001 | 2048 | 2048
e 8192 32K | 16384 | 16384 | 4096 | 2048 | 2048
ALGORITHMS 4RM. | 1RM | 1RM. | 1R.M. | 2RM. | 2RM. | 4RM.
COOLEY TUKEY H HS H H | OTHER | OTHER | H
STAND ALONE X X X X
ATTACHMENT X X X X X X
RADIX 2 2/4 2 2 2
PRECISIONS BITS 12 32 18 16 15 12/23 10
BITS INPUT 12 32 8 16 8 12 10
BITS OUTPUT 12 32 18 16 16 24 10
TIMING N=1024 31 56 9 9 25 25 4
EST. COST $70,000 |$356,550| NA | $70,000 | $66,925 | $45,000 | N/A

S = SOFTWARE, H = HARDWARE, R.M. = REAL MULTIPLIER, MS = MILLISECONDS.




PROBLEM AREAS

Some work was done to determine the effect of the number of bits
used in the quantization of the data on the calculated values of the FFT and
the power spectral density function. The few cases studied seem to indicate
that the number of bits used was not too significant. Some improvement in
the speed of calculation usually follows when fewer bits are used. However,
scaling problems are introduced and the effect of the small changes in FFT
and power spectra may cause large changes in the autocorrelation function
and other related functions. This area needs more study.

Another area of concern is the autocorrelation and cross-correlation
functions. Most of the literature recommends some type of filter of the
original data. With deterministic data, the resulfs were good without
these filters. Study of the effect of these filters on other types of data is
indicated.

The transfer function and phase angle need to be investigated further.
The use of these functions without separation of frequencies seems to give
almost meaningless results.

Figures 14 and 15 show the raw data that were analyéed.

CONCLUSION

The FFT that has been defined and used in this report does yield
good estimates in the frequency domain. These estimates are given at
discrete intervals (Af). The FFT, as all other digital methods such as
STAN or RAVAN, does not define energy between two adjacent frequency
intervals. Values between adjacent points can be interpolated; however,
caution has to be taken in the interpretation of these interpolated results.
When more resolution is desired, a longer data record can generally be
used to obtain this resolution. The FFT does yield results at least equal
to previously used techniques such as RAVAN and STAN., More important,
the speed advantage of the FFT is several magnitudes greater than the
Blackman-Tuckey techniques used by RAVAN. The most important feature
of the FFT is that computational algorithm hardware and core memory
(FFA) can be added to existing computers to perform rapid real-time
signal or data processing. In our investigation, the number of bits that
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defined each data sample was not as critical as the sampling rate. Figures 10
and 11 showed that reducing the A/D size from 11 bits to 6 bits only reduced
the power spectral density (PSD) magnitude of the major five predominant
frequencies by 10 percent. When the A/D size was reduced from 11 bits to
2 bits, Figures 12 and 13, the PSD magnitude of the predominant frequency
was degraded about 10 percent. As expected, the number of predominant
frequencies that are detectable are fewer and the lower amplitudes are
degraded the most when two bits are used.

From the foregoing studies it can be concluded that quick-look
vibrational analysis of a few channels with a digital computer is feasible for
structural testing. A hardware Fast Fourier Analyzer (FFA) comnected to
the computer as a peripheral reduces considerably the analysis time,
particularly in case a relatively slow computer is used. It is expected that
with a modern medium size digital computer with an FFA, a complete
quick-look vibrational analysis of a signal can be computed and displayed
every 5 seconds. If one assumes that a waiting time of 1 minute is
acceptable, 12 channels could be monitored simultaneously for vibrational
analysis of structures. The study also showed that the time to display the
data on the CRT must not be neglected, and that proper selection of the
display unit has to be considered.

The FFT was used to calculate the total power in two response
functions (time function). These two functions were 100 e_iot and
100 e_Zt sin 12mt. These were chosen to represent two realizable systems.
The calculated values and the theoretical values were in close agreement,
The results are summarized in Tables 11 and 12.
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APPENDIX

FAST FOURIER TRANSFORM

The spectral density functions can be defined directly by taking Fourier
transforms [1]. There are certain theoretical requirements necessary for the
existence of these transforms; they will be assumed to be met. For those
interested, there are many rigorous treatments of the Fourier transform. The
spectral decomposition of a time series x(t) will be developed by assuming that
it has a complex Fourier transform X(f) such that

-}

X(f) = [ x(t) ¢ ™ gt
-0
and conversely
0
i2
x(t) = [ x(pe’ as
~-o0

A sufficient condition for the existence of these integrals is that x(t) and its
derivative x(t) be piecewise continuous in every finite interval (a,b) and the
x(t) be integrable on (-, «). These conditions can be satisfied (and usually
are) in practical problems by setting x(t) equal to zero outside some fixed range
of t [that is, making x(t) a finite time series].

Similarly, if there exists a second time function y(t), it will be assumed
to have a complex Fourier transform Y(f) such that

o0

v = [y e 2Ty
and
vty = [ (D) 2T Tty
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In practice, x(t) and y(t) are assumed to be zero outside some range of t
and that there are no frequencies above some finite frequency F. Hence, the

integrals become

T .
X(H) = [ x(t) o 12 Tar
0

F .
x(t) = [ X(nel gt
-F

T .
Y = [yt o TI2m Tty

0

and

F .
yt = [ ¥ o
-F

af

Also, in practical problems the time series x(t)’ must be sampled at a certain
increment and the sampled values used. This requires the integrals to be
redefined as sums of products. Usually, equal spacing is used for time and
X(f) and Y(f) are calculated at equally spaced points of frequency. Using

the trigonometric form of ew, these integrals become

N-1
X(£) = (At) ), x(t) [cos2m £t - j sin 2m £1,)
K=0
N-1
X(tk) = (Af)_ ;O X(fi) [cos 27 fitk +j sin 27 fitk,)

and similarly for Y(f) and y(t).

If X(f) and Y(f) are calculated for a discrete set of t values, they
are referred to as Discrete Fourier Transforms or DFT. When the time series
x(t) is a discrete set of equally spaced numbers, there is a process of
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multiplication that permits faster calculation of X(f). If t; = T where

N
k . 1 I\N/T 2m .
N =2 for some integer and Af = T 2m 4t = 2w (T) (N =X Then if
o ~j2w £ ¢
o127 ity is denoted by «, then e kl_ g . Using this notation
X(f) can be written as
T x(0) T 1 [ xt)
X(Af) i o« «® ... a7t x(t)
. _ 1 o 2 o 4 ' 2(N-1)
: | (N-1) (N-1)°
| X[(¥-1) A1 ERC Ry o N sty

T
or X (f) = AxT(t) , where each value of X(f) must be multiplied by (At)
for the true value.

If this method is used with the following arithmetic, it is called the Fast
Fourier Transform or FFT. The speed of calculation is obtained by factoring
A in such a way as to minimize the complex multiplication and addition. It

should be remembered that (3-27r k_ eO =1 for any integer k and since

_em

o =e N , akl can be represented as ozt where t is the remainder when
kl is divided by N. Using this notation, factoring for N=4and N =8 is
given, If N=4 (i.e., Xj, Xy, Xy, X3 form the discrete time series), the
matrix notation for the Discrete Fourier Transform is

1 1 1 1] [x ] X(0) |
1 o ol al X4 X(Af)
X(f) = =
(f) = at 1 a2 at af Xy X(2Af%)
1 af af af X3 | X(3a1)
1 .
where Af:f’ o =—%—, oz4k+l=oz1 and 1=0, 1, 2, 3.
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The Fast Fourier Transform factors A as follows:

t at o0 0] (1 0 1 o]
1 a? o0 0 0 1 0 1

Q: 0 0 1 014 and R = 1 0 az 0
0 0 1 ozzj 0 0 al

but
1 1 1 1
1 o’ at ol
R =

Q 1 o a? al

1 a® af

The two middle rows have to be interchanged. Hence, if one does the matrix
multiplication yT(t) = R[x(t)], then yT(t) = QyT(t) . The rows must be
decoded. Using binary subscripts and starting with 0,

Rgy — Roo

Ryt — Ry

Rip — Ros

Ryy — Ry

In other words the second element of ZT would be the third element of AXT

and the third element of Z would be the second element of AXT. The first
and fourth (zero and third) would be in the same locations.

If N=28 (i.e., Xg, Xy, X9, X3, X4, X5, Xg, X form the discrete time
0s X1o X3, X3, Xy, X5, Xg
series), the matrix multiplication for the Discrete Fourier Transform is
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1 1 i 1 i 1 1 i X
1 «o a? ol al X4
1 o? ot ol
3 21
XT(f) ) 1 o o
i - 1 o o 28
1 o® . a
1 af a ¥
1 a® . . . . . ot Xq

and X[(k-1)Af] is the vector dot product of the kth row of the matrix and the
column of x values. The powers of « are not reduced module 8 for reasons
_2m

that will became apparent (a =@ 8 ) This same matrix is used for the

Fast Fourier Transform but is factored into three matrices and multiplied in
that way.

The matrix factorization is done in the following way. Take the first
two rows (2 x 4 = 8) and divide each one into two equal parts. The first
half of the first row is the diagonal of a 4 x 4 submatrix in the upper left
corner. The second half of the first row is the diagonal of 2 4 x 4 matrix
in the upper right corner. Then the first half of the second row is the diagonal
of a 4x 4 matrix in the lower left corner and the remainder of the second row is

the diagonal of a 4 x 4 submatrix in the lower right. In short, one of the factors
is

[ 1 0 o0 0 1 0 0 o 1
01t 0 o0 o0 1 0 0O
0 0 1 0 0 0 1 0
00 o 1 o o 0 1
R = £t 0 0 0 «f o 0 0
0 a 0 0 0 a® 0 0
0 a? 0 o 0 o o
0 0 0 a3 o0 O ol
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Now, the other factor must be found. It is

1 1 1 0 0 0 0
1 a? ot o 0 0 0 0
1t at a® o 0 0 0 0
1 a® o a® o o0 i 0
Q= 0o 0 0 o 1 1 1 1
0 0 0 0 1 a? at of
0 0 0 0 1 at b o
0 0 0 0 1 ab a2 o8

However QR interchanges rows of A so that they occur Rj, Rj3, Rjs, Ry, Ry,
Ry, Rg, Rg. (Perhaps one would rather say Ry, Rg, Ry, Rg, Ry, Rs, Rs, Ry,
since if binary subscripts are used this is more consistent.)

Now, Q must be factored. If these are designated as Q;Rq,

[ 1 o0 1 0 7
1 0 1
Ry = 0 0
1 0 at 0
0 a? 0 b
L 0 B ,

where B is the matrix in the upper left hand corner. Basically the same
procedure as used to get R from A is used on each 4 x 4 matrix on the diag-
onal of Q. Then, Q is a matrix with 2 x 2 matrices on the diagonal so that

r__i a® 0 0 o0 o 0 o_
1t a* 0 0 o0 o0 o0 o0
0 0 1 a® o0 o0 0 0
Q = 0 0 L a* 0o o0 0 0
0 0 0 0o 1 «® o o0
0o 0o 0 o 1 a* o o
0 0 0 o0 0 1 af
0 0 0 0 o0 o0 1 ot
- —
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Actually, one should remember that «® =1, « 4= -1 and in general

N 0, 1, ..., T;also (Q, R,) interchanges rows of

Q. The old rows of @ are now ordered R;', Rg', Ry', Ry', Rs', Ry, Rg', Rg',

where Rk' was the kth row in Q. Hence, the rows are now ordered quite dif-

ferently from the original matrix A. In matrix notation, the relationship can
be written A = PQR = P(PyQRy) R, where P is a matrix obtained from the
identity matrix by doing to it what must be done to R to give Aj; that is, first
row is left alone, second row becomes third, third row becomes fifth, fourth
row becomes seventh, fifth row becomes second, sixth row becomes fourth,
and seventh row becomes sixth. This last row is unchanged. This gives

o o o o © © M
o © © © O = o ©
o © © r o © ©o o
o m o o o o o o
o © o o © o ~ o
o o o o m & o o

<

o © ~ o o o o ©
= © 0 o © © © o

.

Now, similarly

o O O O o o o =
o O O O o » o o
o O O o o o = O
o = O O O © o ©

o © © Bk o o ©°o ©o
o © = o o o ©o o
- © © o o o o o,

o O O O B o © ©

s

and
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PP, =

o © o o o o &'
- - - = =)

0
0
0
0
0
i
0

O O o O =» O O

O O O = O o ©o ©
o O O O O o = O

o O O R O O O
= o ©o o o o ©o o

0 0 0 0 0

In other terms the first and eighth rows of Q;R;{ R are the first and eighth

rows of A, the fifth row of the product is the second'row of A, etc. An easier
way to remember is to use binary subscripts on the rows and start with 0. Then
they are ROOO’ R-001, Row, R()“, RiOO’ R101’ Ruo, Rili' Reverse the order of the
ones and zeros. The rows in the product QR4 R must be reordered in that
manner; that is,

In A In Product
0 —Rgp Rog0
Ry Rig0
Royg Rg19
Royy Ry10
Rypp — Roo1
Ripg — Ryo1
Ryjgp Rou1
Ryyg Ryt

For clarity the fourth row starting with the 0 row of QR4R is the first row
of A,

The order of multiplication then becomes

ZT = R XT
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and

XT(f) = 131>1UT

or XT(f) is UT decoded by the process explained above. The factor (At)
is usually omitted until the last step.

There are several advantages using this method. One of these is as
follows. X(f) is permitted to be complex. If one has two real time series,
let Z(ti) :X(ti) +jy(ti). Find the FFT of z(t) or Z(f). Then

Z(kAE) + Z[(N-k)A ]
2

X(kAT)

and

Y(kAf) = Z(kAT) —.Z[(N-k)Af] ’
2j
where Z is the complex conjugate of Z.

Another special application is the following. If x(t) is a discrete

(equally spaced) time series of length Zk, let

(xO, xz, Xyo » oo

x4 () N-2)

5 o XN_i)

xz(t) = (Xi’ X3, X
be the two discrete time series of length Zk_i formed as shown. Then enter
x4(t) as the real part of x(t) and x,(t) as the imaginary part of x(t) in the
matrix. Now, noting that the time spacing in xy(t) and x,{t) is 2At, the
FFT of x(t) can be obtained by one pass through FFT process., Let A,(f)
be the transform of x;(t) and Ay(f) be the transform of x,(t). Then, for
the original series x(t),
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ji2r k
N

X (kA f) -_-% A(kAT) + Ay(kAf)e

for k<—1;— and

X[(N-kK)Af] = X(kAf)
for (N-k) > %

Since the correlation function is the inverse Fourier transform of the
power spectral density function, the FFT routine may be used to calculate the
correlation function. Actually, the entries in the matrix notation would have
positive powers. However, the problem is easily solved by complex arithmetic.

9 s
Most programs use e“™ ft rather than e jor ft as used in this report. If this

is the case, then the actual Fourier transform is the complex conjugate of the
calculated FFT. If this is the case, then using SX( f) as the entry for x(t)

yields the autocorrelation function. In matrix notation, using CXX(t) for the

correlation function,

¢ (o) | 1 Lo, 1 1 x0 ]
XX
+B_7[_ ja4r j(N=-1) 27
C_ (ty) 1 e N e ¢ N X(Af)
XX
=(Af)
(N—i)jZn J(N-1) 221
N N
X[(N-1)Af
_CXX(tN_i)_ _1 e e | _[( ) ]_
or

c T =Bxtn
XX

where each element of B is the complex conjugate of the matrix A in the
calculation of the FFT. In most subroutines, the matrix B. given above is

the one used. Logic steps easily change the calculated values into the correct
Fourier transform.
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